Appendix to Paper : a Geometric Level - Set Formulation of a Plasma - Sheath Interface

نویسنده

  • MARSHALL SLEMROD
چکیده

In this paper, we present appendices employed in the paper ”A geometric level-set formulation of a plasma-sheath interface” by the authors. Appendix A. Local existence of sheath solutions In this appendix, we present a series of a priori estimates for the approximate solutions constructed in Step 0 Step 7 in Section 7 and then give the proof Theorem 7.3. A.1. Basic a priori estimates. In this part, we give a priori estimates for the approximate solutions constructed in Step 0 Step 7. A.1.1. A priori estimates for Step1 . In Lemmas A1-A3, we will give a proof of the existence, uniqueness and regularity for n as given in Step 1 of Section 7.2. We first consider the equation for a characteristic curve. For given (x, t), (A.1) ∂sχ(s, t,x) = v(χ(s, t,x), s), χ(t, t,x) = x, 0 ≤ s ≤ T. In what follows, we will use calculus type estimates for the Hölder seminorm. For fi ∈ C(Λ̄s(T ;v)) i = 1, 2, we have [[f1f2]]0,γ ≤ [[f1]]0,γ |||f2|||0 + |||f1|||0[[f2]]0,γ , (A.2) [[e ]]0,γ ≤ e 0[[f ]]0,γ . (A.3) Here [[·]]0,γ and ||| · |||0 denote the Hölder and esssup norms defined on the same space-time region. In the following Lemma, we use simplified notation for balls in R2: B1 := B(0, rb + 3K0δ T0) and B2 := B(0, rb + 6K0δ T0). Lemma A.1. There exists a sufficiently small constant T0 > 0 and a unique solution χ to the equation (A.1) satisfying the following estimates: For 0 < T ≤ T0, v ∈ B(T ), (1) The forward characteristic curve χ(s, 0,x), s ≥ 0, x ∈ Ωs(0;v) ⊂ (B1 − Ω0) hits the target boundary ∂Ω0 and the ion-density in the region Λ 1 s(T ;v) is given by n(χ(t, 0,x), t) = n0(x) exp ( − ∫ t 0 (∇ · v)(χ(s, 0,x), s)ds ) , x ∈ Ωs(0;v). (2) χ(s, t,x) ∈ C1,γ([0, T ] × [0, T ]× R2) and sup s,t,x max i,j=1,2 |∂xjχ| ≤ 2. 1 2 MIKHAIL FELDMAN, SEUNG-YEAL HA, AND MARSHALL SLEMROD (3) Suppose that vi → v in C1,γ(Λ̄(T )) and let χi and χ be the characteristic curves corresponding to vi and v respectively. Then for (x, t) ∈ Λs(T ;v), χi(·, t,x) → χ(·, t,x) in C([0, T ]). (4) α(x, t) := χ(0, t,x) is Lipschitz continuous in (x, t) ∈ Λ(T ) with a Lipschitz constant 4, i.e. |α(x, t) − α(y, s)| ≤ 4|(x, t) − (y, s)|. Proof. (i) It follows from the dissipative condition (D2) in the definition of B(T ), we have v(x, t) · x ≤ −0 2 |x|, (x, t) ∈ (B2 − Ω0)× [0, T ]. Then we have for (x, t) ∈ (B2 − Ω0)× [0, T ], d ds |χ(s, t,x)| = 2〈v(χ(s, t,x), s),χ(s, t,x)〉 ≤ −η0|χ(s, t,x)|. Here 〈·, ·〉 denotes the standard inner product in R2. Hence the characteristic χ(s, t,x) satisfies |χ(s, 0,x)| ≤ e η0s 2 |χ(0, 0,x)| = e η0s 2 |x|. So χ(s, 0,x) has decreasing magnitude and must hit the target at some positive s. Let T ≤ T0 and we define the subregions Λs(T ;v),Ωs(T ;v) of Λ(T ) and Ωs(0) as in Step 1 of Section 7.2.1. Then the characteristic curve χ(s, 0,x), (x, 0) ∈ Ωs(0) × {t = 0} hits the target boundary ∂Ω0 and will provide the ion density n at the target boundary, i.e., n(χ(t, 0,x), t) = n0(x) exp ( − ∫ t 0 (∇ · v)(χ(s, 0,x), s)ds )

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometric Level-set Formulation of a Plasma-sheath Interface

In this paper, we present a new geometric level-set formulation of a plasmasheath interface arising in the plasma physics. We formally derive the explicit dynamics of the interface from the Euler-Poisson equations and study the local-time evolution of the interface and sheath in some special cases.

متن کامل

On Parameter Estimation Using Level Sets

Consider the problem of selecting the member of a parametrized family of curves that best matches a given curve. This is a key step in determining proper values for adjustable parameters in low-order plasma etching and deposition models. Level set methods o er several attractive features for treating such problems. This paper presents a parameter estimation scheme that exploits the level set fo...

متن کامل

A New Method for Root Detection in Minirhizotron Images: Hypothesis Testing Based on Entropy-Based Geometric Level Set Decision

In this paper a new method is introduced for root detection in minirhizotron images for root investigation. In this method firstly a hypothesis testing framework is defined to separate roots from background and noise. Then the correct roots are extracted by using an entropy-based geometric level set decision function. Performance of the proposed method is evaluated on real captured images in tw...

متن کامل

Interface Characterization of Plasma Sprayed Hydroxyapatite Coat on Ti 6Al 4V

Hydroxyapatite (HA), a material proven to be biocompatible within the human body, has been produced to a high level of purity. This material has been applied as a coating on Ti-6Al-4V alloy by using the air plasma spraying technique. The coat was characterizted with SEM, XRD, FTIR and Raman spectroscopy methods to consist of a mixture of calcium phosphates including HA mainly and traces of tric...

متن کامل

Data and Methods for the Production of National Population Estimates: An Overview and Analysis of Available Metadata

Thomas Spoorenberg Translated by: Elham Fathi Statistical Center of Iran Abstract. Official population estimates can be produced using a variety of data sources and methods. These range from the direct extraction of information from continuously updated population registers to procedures for updating the status of a population enumerated previously in a periodic census. Additional sources and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004